967

Solution Thermochemistry of Phosphorus(v) Bromide, and Tetrachlorophosphonium Tetrachloroborate and Tetrabromoborate

By Arthur Finch,* Peter J. Gardner,* Peter N. Gates,* Abdul Hameed, Connor P. McDermott, Kalyan K. SenGupta, and Michael Stephens, Department of Chemistry, Royal Holloway College, Egham Hill, Surrey TW20 0EX

Using a solution calorimetric method the standard enthalpies of formation at 298.15 K of PBr₅(c), BPCl₈(c), and BPBr_s(c) have been determined as -60.5 ± 0.6 , $-223.9_5 \pm 0.6$, and -135.5 ± 0.7 kcal mol⁻¹, respectively, the first two results differing significantly from literature sources.

THE solution thermochemistry and the derived heats of formation of PBr₅ and BPCl₈ have been reported previously.1-3 Subsequent experiments in this laboratory have shown that hydrolysis of compounds containing the tetrachlorophosphonium ion is relatively slow (see Results and Discussion section). The earlier thermochemical studies ^{2,3} on BPCl₈ were suspect since only the initial rapid phase of the hydrolysis was considered in processing the results. Accordingly, further studies using a superior calorimeter not previously available have been undertaken. Similar measurements on PBr₅ and BPBr₈ are also reported. Both BPCl₈⁴ and BPBr₈⁵ have ionic structures in the solid phase, $[X_{4}P][BX_{4}]$ (X = Br or Cl).

EXPERIMENTAL

Materials.-Phosphorus(v) bromide (B.D.H.) was crystallised from freshly distilled, sodium-dried diethyl ether in a nitrogen-filled dry-box. Excess of ether was removed by pumping at 0.01 Torr at room temperature for 1 h.† Analysis for bromine was by a conventional Volhard titration on the hydrolysate (Found: Br, 92.6. Calc. for PBr₅: Br, 92.8%). The density of PBr₅ was calculated from crystallographic data 6 as 3.62 g cm⁻³.

The compound BPCl₈ was prepared according to Holmes.⁷ Analyses for chlorine and boron were by conventional titrimetric procedures (Found: B, 3.30; Cl, 87.2. Calc. for BPCl₈: B, 3·32; Cl, 87·16%). The compound BPBr₈ was prepared by mixing methylene chloride solutions of PBr₅ and BBr₃, a modification of the method of Tarible⁸ (Found: Br, 93.2. Calc. for BPBr₈: Br, 93.9%). The densities of BPCl₈ and BPBr₈ were determined pycnometrically at 25 °C as 2.79 and 3.35 g cm⁻³ respectively.

Calorimeter.—An LKB 8700—1 precision calorimetry system was used with the out-of-balance signal displayed on a chart recorder. The calorimeter was filled with deionised water (100 cm³, pH 6.0) and the ampoules were loaded in a nitrogen-filled dry-box. For both PBr₅ and BPCl₈, analysis of a post-calorimetry hydrolysate revealed no

† Throughout this paper, 1 cal = 4.184 J; 1 Torr = (101.325/760) kPa, and 1 Å = 10^{-10} m.

¹ A. Finch, P. J. Gardner, and I. H. Wood, J. Chem. Soc., 1965, 40.

- K. K. SenGupta, Ph.D. Thesis, London University, 1967.
- P. J. Gardner, Inorg. Chem., 1969, 8, 1187.
 V. P. Petro and S. G. Shore, J. Chem. Soc., 1964, 336.
 A. Finch, P. N. Gates, and F. J. Ryan, J.C.S. Dalton, 1973,
- 1863.
 - W. Gabes and K. Olie, Acta Cryst., 1970, B26, 443.
 - R. R. Holmes, Inorg. Synth., 1963, 7, 79.
- ⁸ M. Tarible, *Compt. rend.*, 1893, **116**, 1521. ⁹ E. J. Prosen and M. W. Kilday, *J. Res. Nat. Bur. Stand.*, 1973, A77, 581.

deterioration of the compounds on storage. The calorimeter was tested by measuring the enthalpy of neutralisation of tris[(hydroxymethyl)amino]methane (tham) in excess of 0·1 mol dm⁻³ HCl for which ΔH (298·15 K, 1 280 < N < 1464 = -7.104 ± 0.006 kcal mol⁻¹. Prosen and Kilday ⁹ obtained ΔH (298.15 K, N = 1.345) = $-7.115 \pm$ 0.007 kcal mol⁻¹ for the same reaction; N is the mole ratio of H_oO to tham. Uncertainties are expressed throughout as $\pm 2\sigma$, σ being the standard deviation of the mean.

RESULTS AND DISCUSSION

The hydrolysis of BPCl₈ was initially rapid but tailed off after 2-3 min and was complete only after ca. 30 min. This behaviour is similar to PCl₅.¹⁰ The hydrolyses of PBr₅ and BPBr₈ were complete within ca. 3 and ca. 15 min respectively. Enthalpy changes for reactions (1)

$$\begin{aligned} \mathrm{PBr}_{5}(\mathrm{c}) + (n+4)\mathrm{H}_{2}\mathrm{O}(\mathrm{l}) \\ &= (\mathrm{H}_{3}\mathrm{PO}_{4} + 5\mathrm{HBr})\boldsymbol{\cdot}n\mathrm{H}_{2}\mathrm{O} \quad (\mathrm{l}) \end{aligned}$$

$$BPX_8(c) + (n + 7)H_2O(l) = (H_3PO_4 + H_3BO_3 + 8HX) \cdot nH_2O \quad (2)$$
$$(X = Br \text{ or } Cl)$$

and (2) are collected in the Table. Ignoring the heats of mixing of the products and with the following ancillary data, ΔH_{f}^{Θ} $(H_3PO_4, 40H_2O) = -309.34 \pm 0.38$,¹¹ $H_{3}PO_{4}, 40H_{2}O \longrightarrow nH_{2}O) = -1.165,^{12}$ ΔH (diln. (HCl, 4 700 H₂O) = -39.902 ± 0.020 ,¹² $\Delta H_{f^{\oplus}}$ $\Delta H_{\rm f}^{\Theta}$ (HBr, 4 000 H₂O) [in equation (1)] = -29.001 ± 0.020 ,¹² $\Delta H_{\rm f}^{\bullet}$ (HBr, 15 000 H₂O) [in (2), X = Br] = -29.024 \pm 0.020¹² (the maximum errors caused by ignoring the extent of dilution of HX in the PBr₅, BPCl₈, and BPBr₈ experiments were 0.04, 0.07, and 0.13 kcal mol⁻¹ respectively), $\Delta H_{\rm f}^{\bullet}$ (H₃BO₃, c) = -261.59 \pm 0.31 (mean of two ^{13,14} recent data), ΔH (soln. H₂BO₂) = -5.25,⁹ and $\Delta H_{\rm f}^{\Theta}$ (H₂O, 1) = -68.315 ± 0.010 kcal mol⁻¹, we ¹⁵ obtain $\Delta H_{f^{\Theta}}$ (BPCl₈, c) = $-223 \cdot 9_5 \pm 0.6$, $\Delta H_{f^{\Theta}}$ (PBr₅, c) = -60.5 ± 0.6 , and $\Delta H_{f^{\bullet}}$ (BPBr₈, c) = $-135.5 \pm$ 0.7 kcal mol⁻¹. The value for PBr₅ lies between the

¹⁰ G. I. Birley and H. A. Skinner, Trans. Faraday Soc., 1968,

64, 3232. ¹¹ A. J. Head and G. B. Lewis, J. Chem. Thermodynamics, 1970,

¹⁴ A. J. Head and G. B. Lewis, J. Chem. Thermodynamics, 1970, **2**, 701.
¹² D. D. Wagman, W. H. Evans, V. B. Parker, J. Halow,
S. M. Bailey, and R. H. Schumm, Nat. Bur. Stand. Tech. Note
270-3, U.S. Govt. Printing Office, Washington, D.C., 1968.
¹³ W. D. Good and M. Mansson, J. Phys. Chem., 1966, **70**, 97.
¹⁴ G. K. Johnson and W. N. Hubbard, J. Chem. Thermodynamics, 1969, **1**, 459.
¹⁵ Report of the ISCUL-CODATA Tech group on Variation (1996).

¹⁵ Report of the ISCU-CODATA Task group on Key Values in Thermodynamics, November 1971, J. Chem. Thermodynamics, 1972, **4**, 331.

result from previous measurements 1 (-54.6 + 1.2 kcal mol⁻¹) and the N.B.S. recommended value 12 (-64.5 kcal mol⁻¹). This latter figure derives from a weighted mean of results from hydrolysis,¹⁶ PBr₃-bromination,¹⁶ red P-bromination,¹⁷ and PBr₅-decomposition ^{18,19} experiments. We are unable to account for the difference in the results from the present and previous ¹ hydrolysis experiments.

The heat of hydrolysis for BPCl₈ reported here $(-183.9 \pm 0.3$ kcal mol⁻¹) is considerably more exothermic than that $(-155.0 \pm 0.6 \text{ kcal mol}^{-1})$ obtained from the previous measurements ^{2,3} and this arises from hydrated phosphate ion. Since the hydrolysis of metal tetrachloroborates is known²⁰ to be fast, presumably a similar explanation can be invoked for $[\hat{C}l_AP][BCl_A]$ and possibly $[Br_4P][BBr_4]$. However, the rapid hydrolysis of PBr₅ does not lend support to this argument.

Gal'chenko²¹ has reported the enthalpy of chlorination of boron phosphide [equation (3)] and combining

$$BP(c) + 4Cl_2(g) \longrightarrow BPCl_8(c), \Delta H_3 = -192.25 \pm 0.20 \text{ kcal mol}^{-1} (3)$$

this with $\Delta H_{\rm f}^{\bullet}$ (BP, c) = -27.6 ± 1.1 kcal mol⁻¹ (ref. 22) we derive ΔH_{f}^{Θ} (BPCl₈, c) = -219.9 ± 1.2 kcal

m †/g	$-\Delta H_1/$ kcal mol ⁻¹	m †/g	$-\Delta H_2(X = Cl)/kcal mol^{-1}$	m^{\dagger}/g	$\frac{-\Delta H_2(\mathbf{X} = \mathbf{Br})}{\text{kcal mol}^{-1}}$
0.09902	121.6	0.04081	184.2	0.02619	186.6
0.10176	121.4	0.04341	184-1	0.04856	185-1
0.10370	$122 \cdot 4$	0.04841	183.6	0.05986	186-1
0.10814	121.1	0.05111	183-4	0.06357	184.2
0.12642	121.9	0.05151	183.5	0.06542	185-4
0·14336 ₅	121.9	0.05662	184.4	0.06655	184.4
Mean $(\pm 2\sigma)$	121.7 + 0.4	Mean $(\pm 2\sigma)$	$183 \cdot 9 + 0 \cdot 3$	0.07322	185-6
		(_ /	—	0.07719	185.9
				0.10452	184.4
				0.11791	185-2
				Mean $(\pm 2\sigma)$	$185\cdot3\pm0\cdot5$

Reactant masses and enthalpy changes for equations (1) * and (2) * at 298-15 K

* In these equations n is given $32\ 000 < n_1 < 44\ 000$, $17\ 000 < n_2$ (X = Cl) $< 24\ 000$, and $64\ 000 < n_2$ (X = Br) $< 289\ 000$. † Sample mass in vacuo.

the recognition of the long 'tailing' of the reaction period which follows the initial, very rapid, stage. The cause of this two-stage reaction is apparently not documented. Preliminary experiments in this laboratory using a selective chloride-ion electrode indicate that in the hydrolysis of phosphorus(v) chloride (which contains the same cation as BPCl_a) formation of the stoicheiometric quantity of chloride ions is very fast although the hydrolysis is known to exhibit a slow second phase.¹⁰ Hence the rate-limiting step concerns the conversion of an oxophosphorus(v) species to its final state of

¹⁶ J. Ogier, Compt. rend., 1881, 92, 83.

¹⁹ M. van Driel and H. Gerding, Rec. Trav. chim., 1941, 60, 869.

mol⁻¹, which differs significantly from the present result $(-223.9_5 \pm 0.60 \text{ kcal mol}^{-1})$, possibly due, as suggested earlier,²² to interaction between Cl₂ and BPCl₈.

We thank Royal Holloway College for the award of a postgraduate studentship (to C. P. McD.), and Messrs. Albright and Wilson Ltd. and the Central Research Fund of the University of London for support.

[4/2320 Received, 7th November, 1974]

²⁰ A. Finch, P. J. Gardner, N. Hill, and N. Roberts, J.C.S. Dallon, 1975, 357.
 ²¹ G. L. Gal'chenko, B. I. Timofeev, D. A. Godakyan, Y. K.

Grinberg, and Z. S. Medvideva, Izvest. Akad. Nauk S.S.S.R., Neorg. Materialy, 1966, 2, 1410 (Chem. Abs., 1966, 65, 19367a).
²² P. Gross, C. Hayman, and M. C. Stuart, Trans. Faraday Soc.,

1969, **65**, 2628.

[©] Copyright 1975 by The Chemical Society